skip to content
Computational biomechanics for medicine. Models, algorithms, and implementation Preview this item
ClosePreview this item

Computational biomechanics for medicine. Models, algorithms, and implementation

Author: Adam Wittek; Karol Miller; Poul M F Nielsen
Publisher: New York : Springer, [2013]
Series: Computational Biomechanics for Medicine Workshop series.
Edition/Format:   Print book : Conference publication : EnglishView all editions and formats
Summary:
"Mathematical modelling and computer simulation have proved tremendously successful in engineering. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. The proposed workshop will provide an opportunity for computational biomechanics specialists to present and exchange  Read more...
You are not connected to the Alabama State University Library network. Access to online content and services may require you to authenticate with your library. Off-Campus Access
Getting this item's online copy... Getting this item's online copy...

Find a copy in the library

Getting this item's location and availability... Getting this item's location and availability...

WorldCat

Find it in libraries globally
Worldwide libraries own this item

Details

Genre/Form: Congress
Material Type: Conference publication, Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Adam Wittek; Karol Miller; Poul M F Nielsen
ISBN: 9781461463504 1461463505 1461463513 9781461463511 9781493953769 1493953761
OCLC Number: 821217426
Description: ix, 211 pages : illustrations.
Contents: Part I: Invited Lectures.- Cutting in real-time in corrotational elasticity and perspectives on simulating cuts.- Why most of the intra-operative medical robotic devices do not use biomechanical models? Some clues to explain the bottlenecks and the needed research breakthroughs.- Part II: Computational Biomechanics of Soft Organs and Flow.- Numeric simulation of fluid structure interaction in the aortic arch.- Patient-specific computational models: Tools for improving the efficiency of Medical Compression Stockings.- Intraoperative damage monitoring of endoclamp balloon expansion using real-time finite element modeling.- 3D Algorithm for simulation of soft tissue cutting.- Simulation of congenital heart defect corrective surgeries using thin shell elements.- Efficient suturing of deformable models.- Part III: Computational Biomechanics for Image-Guided Surgery.- Objective evaluation of accuracy of intraoperative neuroimage registration.- Registration of brain tumor images using hyper-elastic regularization.- Heterogeneous biomechanical model on correcting brain deformation induced by tumor resection.- Intra-operative update of neuro-images: Comparison of performance of image warping using patient-specific biomechanical model and BSpline image registration.- Part IV: Musculoskeletal System, Muscles and Injury Biomechanics.- Trabecular bone poroelasticity for microCT-based FE models.- Using multibody dynamics to design total knee replacement implants.- Using tagged MRI to quantify the 3D deformation of a cadaver brain in response to angular acceleration.- Identification of tongue muscle fibre group contraction from MR images.- Finite element analysis of thorax responses under quasi-static and dynamic loading.
Series Title: Computational Biomechanics for Medicine Workshop series.
Responsibility: Adam Wittek, Karol Miller, Poul M.F. Nielsen, editors.

Abstract:

"Mathematical modelling and computer simulation have proved tremendously successful in engineering. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. The proposed workshop will provide an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. For example, continuum mechanics models provide a rational basis for analysing biomedical images by constraining the solution to biologically reasonable motions and processes. Biomechanical modelling can also provide clinically important information about the physical status of the underlying biology, integrating information across molecular, tissue, organ, and organism scales. The main goal of this workshop is to showcase the clinical and scientific utility of computational biomechanics in computer-integrated medicine" -- Publisher's description.
Retrieving notes about this item Retrieving notes about this item

Reviews

User-contributed reviews

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.